手机站

当前位置: > 论文发表 > 综合教育 >

浅析初一学生数学学习困难的调查分析

作者:未知 时间:2015-10-07 阅读:( )

  福建漳州诏安桥东中学 吴细忠 

  关键词:数学学习,调查

  1.学生思维发展水平方面的原因。

  字母代数是由常量数学到变量数学转变的开端。通过有关数、式、方程、函数等内容的学习,学生不但要掌握各种概念、运算法则,而且要学习各种代数变形的思想方法。通过代数学习,使学生的归纳、演绎、抽象、概括等思维形式都获得发展。从运算的角度说,代数运算(特别是式的运算和函数运算)主要是一种形式化的符号变换,其抽象程度较高,不像小学数的运算那样,有现实背景作为思维的强有力依托。

  心理学家曾经从(1)数学概念形成水平的发展;(2)数学命题演算水平的发展和(3)数学推理能力水平的发展等三个方面研究了中学生形式逻辑思维水平的发展情况,研究表明:在概念形成水平的发展上,要经历了解与认识概念、理解与掌握概念和灵活运用概念等阶段。当前,学生(特别是初一学生)对概念的认识较多停留在感性的、初步的水平上,而对概念的发生发展过程、概念的内涵与外延,特别是对概念间的内在联系的认识水平普遍较低。

  2.自然语言、数学语言的理解能力以及转换能力方面的原因。

  数学知识使用专门的数学语言来表述,数学思维必须借助于数学语言才能进行。因此,数学语言既是数学思维的产物,又是数学思维的工具。数学学习的目的就是要学会一套具有一定系统性的数学语言符号体系,并能在遇到问题时采用恰当的数学符号对问题作出表示。这种学习是建立在自然语言能力基础上的。研究表明,数学语言及自然语言理解能力低、数学语言与自然语言的相互转换困难等都会导致代数学习的困难。

  首先,自然语言常常是模糊的,有不确定性。将自然语言不加限定而直接应用到数学中来,就有可能造成错误。有人举过这样一个例子:“一粒麦子构不成一堆,对于任何一个数字n来说,如果n粒麦子构不成一堆的话,那么,n+1粒麦子也构不成一堆。因此,任意多的麦粒都不能形成堆。”造成这个悖论的原因就是因为昧俗匀挥镅灾小岸选闭飧瞿:?拍睢R蛭猲粒麦子与n+1粒麦子是否构成“堆”的界限是模糊的。

  为了克服这种模糊性,数学中常常对自然语言进行改造,加以限定、修饰,使其精确化,从而形成了数学语言简练、明白、准确、形式化的特点。例如,“a+b=b+a”表示交换律, “y=f(x)”表示一元函数,等等。这些内容如果用自然语言来叙述的话,不仅复杂,而且还不一定准确。

  3.数字运算不过关的原因。

  小学学习的数字运算,即正有理数的加、减、乘、除等,是代数学习的必备基础。所谓“数字运算过关”主要有三方面含义,一是能够在一定算理的指导下,根据算法正确地完成运算任务;二是能够根据题目特点,选择恰当的算法,合理、迅速地进行运算;三是能够对运算结果进行评估。这里特别强调正确前提下的运算速度问题,因为它不仅反映了学生对运算原理、法则理解的程度差异,而且还反映了运算习惯、思维概括能力等方面的差异。显然,数字运算中内涵的这些关于运算的正确性、合理性、敏捷性、灵活性等品质,对于中学代数学习是至关重要。调查表明,由于小学数学教学中培养措施不当,导致许多学生错过了养成良好运算习惯、形成必备运算技能的机会,致使后续的代数运算出现困难。

  4.数字记忆广度方面的原因。

  数字记忆广度是指在一定的时间内所能够记忆的数字容量,它反映了一个人对数字材料进行加工和处理、储存和检索的能力。数学学习要求学生能够迅速而稳定地记忆学习材料。这里不仅需要他们能够记住以往学过的定理、公式、法则等“结果”,而且还能够对“结果”的来龙去脉、作用等有良好的记忆。做到这些的前提是在学习过程中对数学学习材料进行充分的加工,通过对数学语言的句法结构、语义及其两者之间联系的分析、对解题方案的深加工、挖掘数学思想方法等认知活动,尽量将学习材料中各种信息组合成“信息组快”,从而增加记忆容量、扩大记忆范围、延长记忆时间。研究表明,代数学习困难的学生普遍存在记忆容量少、记忆线索模糊、记忆层次不清、记忆顺序混乱、记忆时间短等问题。造成这些问题的原因,主要是对数学学习材料中各种信息的组织、加工处理能力不足,长时记忆处于内容无序、结构混乱、提取线索不清晰的状态等。

  所以,遇到学生对一些讲了又讲的题目仍然不能掌握,屡屡犯错时,我们就要深入思考其原因,而不能想当然地认为只要教师讲了,学生就应该会了.只有知道学生的问题出在哪了,才能对症下药.还有,就算我们知道学生不能掌握得很好的原因,但对有些学生来讲,短时间内也是无能为力的.因为上述各方面的能力要通过长期实践练习慢慢积累才能获得.

上一篇:民族院校大学生的学习旨趣与社会学课程教学内容设置

下一篇:留守儿童德育教育现状及分析

奇速英语直播体验课
相关文章
精品推荐